3.111 \(\int \frac{A+B \cos (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=87 \[ \frac{(A+3 B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{(A-B) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}} \]

[Out]

((A + 3*B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) + ((A - B
)*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0768915, antiderivative size = 87, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {2750, 2649, 206} \[ \frac{(A+3 B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{(A-B) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

((A + 3*B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) + ((A - B
)*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2))

Rule 2750

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((b
*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(a*b*(2*m + 1)
), Int[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
b^2, 0] && LtQ[m, -2^(-1)]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{A+B \cos (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx &=\frac{(A-B) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{(A+3 B) \int \frac{1}{\sqrt{a+a \cos (c+d x)}} \, dx}{4 a}\\ &=\frac{(A-B) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}-\frac{(A+3 B) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{2 a d}\\ &=\frac{(A+3 B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \cos (c+d x)}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{(A-B) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.184055, size = 63, normalized size = 0.72 \[ \frac{\frac{1}{2} (A-B) \sin (c+d x)+(A+3 B) \cos ^3\left (\frac{1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sin \left (\frac{1}{2} (c+d x)\right )\right )}{d (a (\cos (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x])/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

((A + 3*B)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]^3 + ((A - B)*Sin[c + d*x])/2)/(d*(a*(1 + Cos[c + d*x]))^
(3/2))

________________________________________________________________________________________

Maple [B]  time = 2.506, size = 220, normalized size = 2.5 \begin{align*}{\frac{1}{4\,d}\sqrt{a \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( A\ln \left ( 2\,{\frac{2\,\sqrt{a}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+2\,a}{\cos \left ( 1/2\,dx+c/2 \right ) }} \right ) \sqrt{2} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}a+3\,B\ln \left ( 2\,{\frac{2\,\sqrt{a}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+2\,a}{\cos \left ( 1/2\,dx+c/2 \right ) }} \right ) \sqrt{2} \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+A\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}-B\sqrt{2}\sqrt{a \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}\sqrt{a} \right ) \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{a}^{-{\frac{5}{2}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{ \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/(a+cos(d*x+c)*a)^(3/2),x)

[Out]

1/4/cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a)/c
os(1/2*d*x+1/2*c))*2^(1/2)*cos(1/2*d*x+1/2*c)^2*a+3*B*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a)/cos(
1/2*d*x+1/2*c))*2^(1/2)*cos(1/2*d*x+1/2*c)^2*a+A*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-B*2^(1/2)*(a*s
in(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/a^(5/2)/sin(1/2*d*x+1/2*c)/(cos(1/2*d*x+1/2*c)^2*a)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 1.72948, size = 455, normalized size = 5.23 \begin{align*} \frac{\sqrt{2}{\left ({\left (A + 3 \, B\right )} \cos \left (d x + c\right )^{2} + 2 \,{\left (A + 3 \, B\right )} \cos \left (d x + c\right ) + A + 3 \, B\right )} \sqrt{a} \log \left (-\frac{a \cos \left (d x + c\right )^{2} - 2 \, \sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, \sqrt{a \cos \left (d x + c\right ) + a}{\left (A - B\right )} \sin \left (d x + c\right )}{8 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/8*(sqrt(2)*((A + 3*B)*cos(d*x + c)^2 + 2*(A + 3*B)*cos(d*x + c) + A + 3*B)*sqrt(a)*log(-(a*cos(d*x + c)^2 -
2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x
+ c) + 1)) + 4*sqrt(a*cos(d*x + c) + a)*(A - B)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a
^2*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.74244, size = 136, normalized size = 1.56 \begin{align*} -\frac{\frac{{\left (\sqrt{2} A + 3 \, \sqrt{2} B\right )} \log \left ({\left | -\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \right |}\right )}{a^{\frac{3}{2}}} - \frac{\sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}{\left (\sqrt{2} A a - \sqrt{2} B a\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{3}}}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

-1/4*((sqrt(2)*A + 3*sqrt(2)*B)*log(abs(-sqrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)))/a
^(3/2) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)*(sqrt(2)*A*a - sqrt(2)*B*a)*tan(1/2*d*x + 1/2*c)/a^3)/d